(1) x2y−xy2−y2z+yz2−z2x−zx2+2xyz =(y−z)x2−(y2−2yz+z2)x−yz(y−z) =(y−z)x2−(y−z)2x−yz(y−z) =(y−z){x2−(y−z)x−yz} =(y−z)(x−y)(z+x) =(x−y)(y−z)(z+x) |
(2) xy((z+y)+yz(y+z)+zx(z+x)+3xyz =(y+z)x2+(y2+3yz+z2)x+yz(y+z) ={(y+z)x+yz}{x+(y+z)} =(xy+yz+zx)(x+y+z) =(x+y+z)(xy+yz+zx) |
(3) (x+y+z)3−x3−y3−z3 ={(x+y+z)3−x3}−(y3+z3) =(x+y+z−x){(x+y+z)2+x(x+y+z)+x2}−(y−z)(y2−yz+z2) =(y+z)(x2+y2+z2+2xy+2yz+2zx+x2+xy+xz+x2−y2+yz−z2) =(y+z)(3x2+3yz+3zx+3xy) =3(y+z){x2+(y+z)x+yz} =3(y+z)(x+y)(z+x) |
(4) (x2+x−2)(x2+x+6)−9 =(A−2)(A+6)−9 =A2+4A−21 =(A+7)(A−3) =(x2+x+7)(x2+x−3) |
(5) (x+7)(x−3)(x2+4x−5)−225 =(x2+4x−21)(x2+4x−5)−225 =(A−21)(A−5)−225 =A2−26A−120 =(A+4)(A−30) =(x2+4x+4)(x2+4x−30) =(x+2)2(x2+4x−30) |
(6) (x−1)(x−2)(x−4)(x−5)−4 ={(x−1)(x−5)}{(x−2)(x−4)}−4 =(x2−6x+5)(x2−6x+8)−4 =(A+5)(A+8)−4 =A2+13A+36 =(A+9)(A+4) =(x2−6x+9)(x2−6x+4) =(x−3)2(x2−6x+8) |
(7) (x2−x+1)(x2−x+5)−21 =(A+1)(A+5)−21 =A2+6A−16 =(A−2)(A+8) =(x2−x−2)(x2−x+8) =(x+1)(x−2)(x2−x+8) |
(8) x4+3x2+4 =(x4+4x2+4)−x2 =(x2+2)2−x2 ={(x2+2)+x}{(x2+2)−x} =(x2+x+2)(x2−x+2) |
(9) x4−18x2y2+y4 =(x4−2x2y2+y4)−16x2y2 =(x2−y2)2−16x2y2 ={(x2−y2)+16x2y2}{(x2−y2)−16x2y2} =(x2+16x2y2−y2)(x2−16x2y2−y2) |
(10) x4−14x2y2+25y4 =(x4−10x2y2+25y4)−4x2y2 =(x2−5y2)2−(2xy)2 ={(x2−5y2)+2xy}{(x2−5y2)−2xy} =(x2+2xy−5y2)(x2−2xy−5y2) |
(11) 9x4+11x2y2+44 =(3x2−2y2)−(xy)2 =(3x2+xy−2y2)(3x2−xy−2y2) |
(12) 27x3−21x2−7x+1 =27x3+1−7x(3x+1) =(3x+1)(9x2−3x+1)−7x(3x+1) =(3x+1)(9x2−10x+1) =(3x+1)(9x−1)(x−1) |
(13) 9x3−9x−2 =(9x3−8)−(9x−6) =(9x3−8)−3(3x−2) =(3x−2)(9x2+6x+4)−3(3x−2) =(3x−2)(9x2+6x+1) =(3x−2)(3x+1)2 |
(14) x3+4x2+2x−3 =x3+3x2+x2+2x−3 =x2(x+3)+(x+3)(x−1) =(x+3)(x2+x−1) |
(15) x3−y3−z3−3xyz =x3+(−y)3+(−z)3−3x(−y)(−z) ={x+(−y)+(−z)}{x2+(−y)2+(−z)2−x(−y)−(−y)(−z)−(−z)x} =(x−y−z)(x2+y2+z2+xy−yz+zx) |
(16) x3+9xy−27y3+1 =(x3−27y3+1)+9xy =x3+(−3y)3+13−3x・(−3y)・1 ={x+(−3y)+1}{x2+(−3y)2+12−x(−3y)−(−3y)・1−1・x} =(x−3y+1)(x2+9y2+1+3xy+3y−x) =(x−3y+1)(x2+3xy+9y2−x+3y+1) |
|
|
Points |
|
(15)
(16) x3+y3+z3−3xyz =(x+y+z)(x2+y2+z2−xy−yz−zx)
は公式として暗記しておこう! |
| |
(17) (x2−x−5)(x+4)(x−5)+26 =(x2−x−5)(x2−x−20)+26 =A2−25A+126 =(A−18)(A−7) =(x2−x−18)(x2−x−7) |
(18) (y+z)(x+y)(z+x)+xyz =(x+y){(y+z)(z+x)}+xyz =(x+y){(z2+(x+y)z+xy}+xyz =(x+y)z2+{(x+y)2+xy}z+(x+y)xy ={z+(x+y)}{(x+y)z+xy} =(z+x+y)(xz+yz+xy) =(x+y+z)(xy+yz+xz) |
(19) 4x4−12x2y2+9y4−16z4 =(2x2−3y2)2−(4z)2 =(2x2−3y2+4z)(2x2−3y2−4z) |
(20) 2(3x+1)4−(3x−1)4−(9x2−1)2 =2(3x+1)4−(3x+1)2(3x−1)2−(3x−1)4 =2A2−AB−B2 [A=(3x+1)2 B=(3x−1)2] =(2A+B)((A−B) ={2(3x+1)2+(3x−1)2}{(3x+1)2−(3x−1)2} ={2(9x2+6x+1)+9x2−6x+1}{9x2+6x+1−(9x2−6x+1)} =(18x2+12x+2+9x2−6x+1)(9x2+6x+1−9x2+6x−1) =(27x2+6x+3)(12x) =3(9x2+2x+1)12x =36x(9x2+2x+1) |