(1) 6x2−11x−10 =(2x−5)(3x+2) |
|
(2) (xy+4)2+(4x−y)2 =x2y2+8xy+16+16x2−8xy+y2 =x2y2+16+16x2+y2 =x2(y2+16)+y2+16 =(x2+1)(y2+16) |
(3) (x2+y2)(p2+q2)−(px+qy)2 =x2p2+x2q2+p2y2+q2y2−(p2x2+2pqxy+q2y2) =x2q2−2pqxy+p2y2 =(xq−py)2 |
(4) 2(2x−1)2+3(2x+3)−11 =2A2+3(A+4)−11 =2A2+3A+12−11 =2A+3A+1 =(A+1)(2A+1) ={(2x−1)+1}{2(2x−1)+1} =2x(4x−1) |
|
(5) x4−81y4 =(x2)2−(9y2)2 =(x2+9y2)(x2−9y2) =(x2+9y2)(x+3y)(x−3y) |
(6) x4−68x2y2+256y4 =(x2−64y2)(x2−4y2) =(x+8y)(x−8y)(x+2y)(x−2y) |
|
(7) 8x6+215x3y3−27y6 =(8x3−y3)(x3+27y3) =(2x−y)(4x2+2xy+y2)(x−3y)(x2−3xy+9y2) =(2x−y)(x−3y)(4x2+2xy+y2)(x2−3xy+9y2) |
(8) (x2−x)2−14x2+14x+24 =A2−14A+24 =(A−12)(A−2) =(x2−x−12)(x2−x−2) =(x+3)(x−4)(x−2)(x+1) |
|
(9) xy+x+y+1 =x(y+1)+(y+1) =(x+1)(y+1) |
(10) xy−yz+pz−px =(x−z)y−(x−z)p =(x−z)(y−p) |
|
(11) x2−4xy+4y2−x−2y =(x+2y)2−(x+2y) =(x+2y)(x+2y−1) |
(12) x3+5x2−9x−45 =x2(x+5)−9(x+5) =(x2−9)(x+5) =(x+3)(x−3)(x+5) |
|
|
|
|
(14) x4−2x3−7x2+8x+12 =(x4−7x2+12)−2x(x2−4) =(x2−3)(x2−4)−2x(x2−4) =(x2−2x−3)(x2−4) =(x−3)(x+1)(x+2)(x−2) |
|
|
(15) x2−(2y−3)−(3y2+y−2) =x2−(2y−3)−(3y−2)(y+1) =x2+{(3y−2)−(y+1)}x+(3y−2){−(y+1)} ={x+(3y−2)}{x−(y+1)} =(x+3y−2)(x−y−1) |
(16) 3x2+7xy+x−3y+2y2−2 =3x2+(7y+1)x+2y2−3y−2 =3x2+(7y+1)x+(y−2)(2y+1) =(3x+y−2)(x+2y+1) |
|
|
(17) 2x2−3y2+5xy+7x+7y+6 =2x2+(5y+7)x−3y2+7y+6 =2x2+(5y+7)x−(3y2−7y−6) =2x2+(5y+7)x−(3y+2)(y−3) ={2x−(y−3)}{x+(3y+2)} =(2x−y+3)(x+3y+2) |
|
|
(18) x2y−5xyz−y−xy2+x−5z =−5z(xy+1)+xy(x−y)+(x−y) =−5z(xy+1)+((xy+1)(x−y) =(x−y−5z)(xy+1) |
(19) x2y2−x2y−2x2−9y2+9y+18 =x2(y2−y−2)−9(y2−y−2) =(x2−9)(y2−y−2) =(x+3)(x−3)(y+1)(y−2) |
(20) x(y+z)2+y(z+x)2+z(x+y)2−4xyz =(y+z)2x+(x2+2xz+z2)y+(x2+2xy+y2)z−4xyz =(y+z)x2+{(y+z)2+2yz+2yz−4yz}x+y2z+yz2 =(y+z)x2+(y+z)2x+y2z+yz2 =(y+z)x2+(y+z)2x+yz(y+z) =(y+z){x2+(y+z)+yz} =(y+z)(x+y)(x+z) |